System for preventing frost heave in freezers, cold rooms and ice arenas with temperature control, monitoring, integrated ground-fault circuit protection and BMS communication capabilities.

Scope

This specification describes an energy efficient freezer frost heave prevention system for freezers, cold rooms, and ice arenas. The MI heating cable can be directly embedded in the subfloor underneath the insulation, or the heating cable can be installed in conduit, with the conduit embedded in the subfloor underneath the insulation (see next page).
Depending on the system design and size of application, one of the two control options listed in Section 2.3.C should be selected.

These first few pages give a general overview of the system and the CSI formatted specification begins on page 5. The specification can be modified to better suit individual projects.

System Description

Mineral Insulated (MI) Heating Cable (In Conduit)

120 V, 208 V, or 277 V nVent RAYCHEM mineral insulated (MI) heating cable with dual conductors surrounded by magnesium oxide insulation. The sheath material can either be copper with an extruded high density polyethylene (HDPE) jacket or Alloy 825. The heating cable shall be factory terminated and have a pulling eye and a reversed gland. The heating cable shall be part of a c-CSA-us Certified or FM Approved system. Typical installation in conduit is shown below.
Mineral Insulated (MI) Heating Cable (Directly Embedded)

120 V, 208-277 V, or 347 V nVent RAYCHEM mineral insulated (MI) heating cable with a single conductor surrounded by magnesium oxide insulation and a copper sheath with an extruded high density polyethylene (HDPE) jacket. The heating cable shall be factory terminated and supplied with NPT gland connectors. The heating cable shall be part of a c-CSA-us Certified or FM Approved system.

Accessories
D1297TERM4: Cast aluminium junction box (Type 3)
MI-GROUND-KIT: Grounding kit when using non-metallic junction boxes

Controller

<table>
<thead>
<tr>
<th>Single Circuit Control</th>
<th>Distributed Group Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>nVent RAYCHEM C910-485 digital controller with:</td>
<td>nVent RAYCHEM ACS-30 Multi-circuit digital control system with:</td>
</tr>
<tr>
<td>• Proportional Ambient Sensing Control (PASC).</td>
<td>• Pre-programmed application based heat-tracing controller.</td>
</tr>
<tr>
<td>• BMS interface.</td>
<td>• Touch-screen user interface nVent RAYCHEM (ACS-UIT2) communicates with up to 52 nVent RAYCHEM ACS-PCM2-5 modular control panels. The RAYCHEM C910-485 digital controller may be added to the ACS-30 Network for single circuit extensions.</td>
</tr>
<tr>
<td>• Two (2) temperature inputs.</td>
<td>• BMS interface.</td>
</tr>
<tr>
<td>• 30 A switching capacity rating.</td>
<td>• Controls up to 260 heat-tracing circuits with up to 388 temperature inputs (RTDs).</td>
</tr>
<tr>
<td>• Selectable fail safe mode, either ON or OFF.</td>
<td>• Proportional Ambient Sensing Control (PASC).</td>
</tr>
<tr>
<td>• NEMA 4X enclosure</td>
<td>• 30 A switching capacity rating.</td>
</tr>
<tr>
<td></td>
<td>• Enclosure:</td>
</tr>
<tr>
<td></td>
<td>o ACS-UIT2: NEMA 4</td>
</tr>
<tr>
<td></td>
<td>o ACS-PCM2-5: NEMA 4/12</td>
</tr>
</tbody>
</table>

Device Server

RAYCHEM ProtoNode: A multi-protocol device server to interface the C910-485 or ACS-30 with a building management system (BMS).
Designer Notes

1. For proper cable selection, refer to the Freezer Frost Heave Prevention Design Guide (H58139) and MI Floor Heating and Freezer Frost Heave Prevention Installation and Operation Manual (H58137).
2. Ground-fault circuit protection is integrated in the C910-485 and ACS-30 controllers and does not need to be provided separately.
3. Multiple sensors can be integrated into all controllers.
4. The C910-485 and ACS-30 may be connected to the BMS using two conductor twisted pair shielded RS-485 cable (PTM Catalog Number: MONI-RS485-WIRE).
5. The C910-485 and ACS-30 programming are based on Modbus protocol. For BMS systems requiring BACnet®, LonWorks® or Metasys® N2, the ProtoNode multi-protocol gateway is required.
6. The ProtoNode is connected to the BMS by Ethernet or RS-485. The installation of the communication wiring is included in specification section 25 50 00.
7. The C910-485 is a wall mounted controller with a Type 4X rated enclosure and can be mounted indoors or outdoors.
8. ACS-UIT2 should be conveniently located in the building connected to the remote ACS-PCM2-5 control panels using RS-485 cable. The ACS-PCM2-5 control panels may be located indoors or outdoors throughout the installation.
9. The location of the controller, power connection and end seals must be shown on the drawings.

Drawing Details

Installation details can be found at CADdetails.com under Floor Heating folder.
PART 1 – GENERAL

1.1 SUMMARY
A. This Section includes a CSA Certified or FM Approved freezer frost heave prevention heat tracing system consisting of mineral insulated heating cable and electronic controller.

1.2 RELATED SECTIONS
A. Section 11 41 26 – Walk-in Freezers
B. Section 13 18 00 – Ice Rinks
C. Section 03 06 00 – Schedules for Concrete
D. Section 03 30 00 – Cast-In Place Concrete
E. Section 25 12 16 – Direct-Protocol Integration Network Gateways
F. Section 25 51 00 – Integrated Automation Control of Facility Equipment

1.3 SYSTEM DESCRIPTION
A. System for preventing frost heave in freezers, cold rooms and ice arenas with temperature control, monitoring, integrated ground-fault circuit protection and BMS communication capabilities.

1.4 SUBMITTALS
A. Product Data
1. Heating cable data sheet
2. CSA or FM approval certificates for freezer frost heave prevention
3. Freezer Frost Heave Prevention design guide
4. System installation and operation manual
5. System installation details
6. Controller/Power Panel data sheet
7. Controller/Power Panel wiring diagram

1.5 QUALITY ASSURANCE
A. Manufacturers’ Qualifications
1. Manufacturer to show minimum of thirty (30) years’ experience in manufacturing mineral insulated heating cables.
2. Manufacturer is ISO-9001 registered.
3. Manufacturer to provide products that comply with UL 515, CSA 22.2 No 130-03 and IEEE 515.1 requirements.
B. Installer Qualifications
1. System installer shall have a complete understanding of product and product literature from manufacturer or authorized representative prior to installation. Electrical connections shall be performed by a licensed electrician.
C. Regulatory Requirements and Approvals
1. The system (heating cable and controller) shall be c-CSA-us Certified or FM Approved for freezer frost heave prevention.
D. Electrical Components, Devices, and Accessories: Listed and labelled as defined in Article 100 of NFPA 70 National Electrical Code by a Nationally Recognized Testing Laboratory (NRTL), and marked for intended use.

1.6 DELIVERY, STORAGE AND HANDLING
A. General Requirements: Deliver, store and handle products to prevent their deterioration or damage due to moisture, temperature changes, contaminates or other causes.
B. Delivery and Acceptance Requirements: Deliver products to site in original, unopened containers or packages with intact and legible manufacturers’ labels identifying the following:
1. Product and Manufacturer
2. Length/Quantity
3. Lot Number
4. Installation and Operation Manual
5. MSDS (if applicable)
C. Storage and Handling Requirements
1. Store the heating cable in a clean, dry location with a temperature range not below -40°F (-40°C) or exceeding 140°F (60°C).
2. Protect the heating cable from mechanical damage.
1.7 WARRANTY
A. Extended Warranty
 1. Manufacturer shall make available a ten (10) year limited warranty for MI heating cables and components. Provide one (1) year warranty for all heat trace controllers.
 2. Contractor shall submit to owner the results of all installation tests required by the manufacturer.

END OF PART 1

PART 2 - PRODUCTS
2.1 MANUFACTURERS AND PRODUCTS
A. Contract Documents are based on manufacturer and products named below to establish a standard of quality.
B. Basis of Design
 1. Basis of Design Product Selections
 a. Manufacturer
 1. Manufacturer shall have more than thirty (30) years’ experience with the manufacture & installation of MI heating cables.
 2. Manufacturer shall provide c-CSA-us or FM approval certificates for freezer frost heave prevention.
 3. Manufacturer shall be nVent located at, 7433 Harwin Drive, Houston, TX 77036 Tel: (800) 545-6258 nVent.com
 b. Freezer Frost Heave Prevention System
 1. MI heating cable
 2. C910-485 digital controller OR ACS-30 [Select one]
 3. ProtoNode multi-protocol device server

2.2 PRODUCTS, GENERAL
B. The system (heating cable and controller) shall be c-CSA-us Certified or FM Approved for freezer frost heave prevention. No parts of the system may be substituted or exchanged.

2.3 PRODUCTS
A. Heating Cable [Select one option]
 1. [Option 1] In Conduit - HDPE Jacketed Copper Sheathed or Alloy 825 Sheathed Mineral Insulated Heating Cable
 a. Heating cable shall be MI heating cable manufactured by nVent.
 b. The heating cable shall consist of dual conductors surrounded by magnesium oxide insulation.
 c. The heating cable shall be factory terminated with a minimum 7 foot cold lead (unheated) length and an NPT gland connector to allow connection to a junction box.
 d. The heating cable shall have a pulling eye for ease of installation in conduit.
 e. Use only UL Listed or CSA Certified 3/4 in (2 cm) or larger diameter rigid galvanized steel or rigid aluminium electrical conduit.
 f. The heating cable shall be supplied with a reversed gland to make a liquid-tight/air-tight connection to the conduit.
 g. The power supply end of the conduit should be terminated with suitably sized female NPT thread to allow connection of the reversed gland supplied on the heating cable.
 h. Only one run of heating cable shall be installed per conduit.
i. If non-metallic junction boxes are used, a grounding kit is required (PTM Catalog Number: MI-GROUND-KIT).

j. The heating cable shall operate on line voltages of 120, 208, 240, 277, or 347 volts [Select one] without the use of transformers. [Custom MI heating cables can be designed to operate for any voltage up to 600 volts. Please contact your nVent sales representative for more information and pricing]

k. The heating cable shall be part of a c-CSA-us Certified or FM Approved system.

l. The MI heating cable tag shall have the following markings
 1. Complete heating cable model number
 2. Agency listings
 3. Serial Number

B. Heating Cable Connection Kits

1. Junction Box – The junction box is a cast aluminium junction box (Type 3) for installation in nonhazardous and C1D2 locations. There are three (3) ½” NPT entries on the bottom, provided with plugs, and includes a 4-pole terminal block. (PTM Catalog Number: D1297TERM4)

C. Control Methodology [Select one option]

1. [Option 1] Single Circuit Local Digital Controller
 a. Local digital controller shall be C910-485.
 b. Heating cable manufacturer shall provide a local digital controller with built-in GFPD compatible with selected heating cable.
 c. Digital controller shall be capable of supporting up to two (2) RTD temperature sensors per control point. Leads can be extended using 18 AWG, 3-wire, shielded cable.
 d. Enclosure type shall be Type 4X fiberglass reinforced plastic (FRP).
 e. Digital controller shall have an integrated adjustable GFPD (10 – 200 mA).
 f. Digital control system can be configured for line-sensing, ambient sensing and PASC modes. PASC control proportionally energizes the power to the heating cable to minimize energy based on ambient sensed conditions.
 g. Digital controller shall be capable of operating with supply voltages from 100 V to 277 V.

 (Directly Embedded)
 a. Heating cable shall be MI heating cable manufactured by nVent.
 b. The heating cable shall consist of a single conductor surrounded by magnesium oxide insulation with a solid, seamless copper sheath.
 c. The heating cable shall have an extruded high density polyethylene (HDPE) jacket to protect the cable from corrosive elements that can exist in the concrete.
 d. The heating cable shall be factory terminated with a minimum 7 foot cold lead (unheated) length.
 e. The heating cable shall be supplied with NPT gland connectors for connection to a junction box.
 f. If non-metallic junction boxes are used, a grounding kit is required (PTM Catalog Number: MI-GROUND-KIT).
 g. The heating cable shall operate on line voltages of 120, 208, 240, 277, or 347 volts [Select one] without the use of transformers. [Custom MI heating cables can be designed to operate for any voltage up to 600 volts. Please contact your nVent sales representative for more information and pricing]
 h. The heating cable shall be part of a c-CSA-us Certified or FM Approved system.
 i. The MI heating cable tag shall have the following markings
 1. Complete heating cable model number
 2. Agency listings
 3. Serial Number
h. Digital controller will have a built-in self-test feature to verify proper functionality of heating cable system.

i. Digital controller will also be able to communicate with BMS by one of the following protocols. Certain protocols will require the RAYCHEM ProtoNode multi-protocol gateway. [Select one]
 1. Modbus
 2. LonWorks® [Select ProtoNode-LER]
 3. BACnet® [Select ProtoNode-RER]
 4. Metasys® N2 [Select ProtoNode-RER]

j. Digital controller will also supply an isolated triac alarm relay and a dry contact relay for alarm annunciation back to the BMS.

k. The following variables will be monitored by the digital controller and reported back to the BMS
 1. Temperature
 2. Ground-fault
 3. Current draw
 4. Power consumption
 5. Associated alarms

l. Digital controller shall have c-CSA-us approvals

2. [Option 2] Distributed Control
 a. Distributed digital control system shall be ACS-30 heat-trace control system.
 b. Heating cable manufacturer shall provide a distributed digital control system with pre-programmed parameters to provide concurrent control for heating cables used for pipe freeze protection, flow maintenance, hot water temperature maintenance, surface snow melting, roof and gutter de-icing, freezer frost heave prevention and floor heating applications.
 c. All programming shall be done through the central User Interface Terminal (ACS-UIT2).
 d. The ACS-UIT2 shall be a color LCD touch-screen display with password protection to prevent unauthorized access to the system.
 e. The ACS-UIT2 shall communicate with up to fifty-two (52) ACS Power Control Panels (ACS-PCM2-5) where each panel can control up to five (5) circuits and accept up to five (5) temperature inputs. The C910-485 digital controller may be added to the ACS-30 Network for single circuit extensions.
 f. Digital distributed control system shall be capable of assigning up to four (4) RTD temperature or external temperature and moisture-sensing device inputs per heat-tracing circuit.
 g. The ACS-UIT2 shall communicate with up to sixteen (16) Remote Monitoring Modules (RMM2), where each module can accept up to 8 temperature inputs.
 h. The ACS-UIT2 shall have a USB port to allow for quick and easy software update.
 i. The ACS-UIT2 shall have three (3) programmable alarm contacts including an alarm light on the enclosure cover.
 j. A separate offline software tool shall be made available to allow users to pre-program the digital control system and transfer program via a USB drive or Ethernet.
 k. The ACS-UIT2 enclosure shall be Type 4 for indoor or outdoor locations.
 l. The ACS-PCM2-5 panel shall be in a Type 4/12 enclosure approved for nonhazardous indoor and outdoor locations.
 m. The ACS-PCM2-5 panel shall provide ground-fault and line current sensing, alarming, switching and temperature inputs for five (5) heat tracing circuits.
 n. Each ACS-PCM2-5 panel shall have five (5) 3-pole, 30 A contactors (EMR type).
 o. The ACS-PCM2-5 panel shall be capable of operating at 120 V to 277 V. [Custom ACS-PCM2-5 panel designs are available if standard configurations are not suitable. Please contact your nVent sales representative for more information and pricing]
 p. The ACS-PCM2-5 shall have an alarm contact including an alarm light on the panel cover.
 q. Digital controller shall have an integrated adjustable GFPD (10 – 200 mA).
Digital controller can be configured for On/Off, ambient sensing, PASC and timed duty cycle control (HWAT only) modes based on the application.

To satisfy energy savings requirements for summer on-peak demand periods, digital controller must have 24/7 time programmability to de-energize the cable during these periods.

Digital control system shall have power off delay, manual forced on/off override and high temperature override.

Digital control system will have a built-in self-test feature to verify proper functionality of heating cable system.

Digital controller will also be able to communicate with BMS by one of the following protocols. Certain protocols will require the RAYCHEM ProtoNode multi-protocol gateway. [Select one]

1. Modbus
2. LonWorks® [Select ProtoNode-LER]
3. BACnet® [Select ProtoNode-RER]
4. Metasys® N2 [Select ProtoNode-RER]

The following variables will be monitored by the digital controller and reported back to the BMS.

1. Temperature
2. Ground-fault
3. Current draw
4. Power consumption
5. Associated alarms

The ACS-UIT2 shall be c-CSA-us Certified. The ACS-PCM2-5 panel shall be c-UL-us Listed.

2.4 SYSTEM LISTING
A. The system (heating cable and controller) shall be c-CSA-us Certified or FM Approved for freezer frost heave prevention.
B. The freezer frost heave prevention system shall have a design, installation and operating manual.

END OF PART 2

PART 3 - EXECUTION

3.1 ACCEPTABLE INSTALLERS
A. Subject to compliance with requirements of Contract Documents, installer shall be familiar with installing heating cable and equipment

3.2 INSTALLATION
A. Comply with manufacturer’s recommendations in the MI Floor Heating and Freezer Frost Heave Prevention Installation and Operation Manual (HS8137).
B. Install and secure the heating cable in accordance with the MI Floor Heating and Freezer Frost Heave Prevention Installation and Operation Manual (HS8137).
C. Install electric heating cable according to the drawings and the manufacturer’s instructions. The installer shall be responsible for providing a complete functional system, installed in accordance with applicable national and local requirements.
D. Grounding of controller shall be performed according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."
E. Connection of all electrical wiring shall be according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL
A. Start-up of system shall be performed by factory technician or factory representative per the owner’s requirements.
B. Field Testing and Inspections
 1. The system shall be commissioned in accordance to the MI Floor Heating and Freezer Frost Heave Prevention Installation and Operation Manual.
2. The heating cable circuit integrity shall be tested using a 1000 Vdc megohmmeter at the following intervals below. Minimum acceptable insulation resistance shall be 20 megohms.
 a. Before installing the heating cable
 b. After installing the cables
 c. Prior to initial start-up (commissioning)
 d. As part of the regular system maintenance
3. The technician shall verify that the C910-485 controller OR ACS-30 control parameters are set to the application requirements.
4. The technician shall verify that the C910-485 controller OR ACS-30 alarm contacts are correctly connected to the BMS.
5. The technician shall verify that the C910-485 OR ACS-30 [Select one] and ProtoNode-RER/-LER [Select one] is configured correctly with the BMS.
6. All commissioning results will be recorded and presented to the owner.

3.4 MAINTENANCE
A. Maintenance Service
 1. Comply with manufacturer’s recommendations found in MI Floor Heating and Freezer Frost Heave Prevention Installation and Operation Manual.

END OF SECTION